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A FORM OF THE PARTICU~R SOLUTION OF THE~OE~STICITY EQUATIONS FOR 
TRANSVERSELY ISOTROPIC BODIES* 

A.N. BORODACHEV 

A new representation is proposed for the particular solution of equations 
of linear uncoupled quasistatic thermoelasticity in displacements for 
transversely isotropic bodies. It contains two functions in a symmetric 
manner, which are determined independently of each other and satisfy 
equations that reduce to Poisson's equations by affine transformations of 
coordinates. In the isothermal case, the representation in question 
reduces to the well-known Elliott solution /l/. Cases of equal andunequal 
roots ofthecharacteristic equation are considered separately. The 
representation obtained for the particular solution is more preferable 
from the viewpoint of satisfying the Sternberg criteria as compared with 
those known earlier. The Nowacki solution /2/ is expressed in a 
sufficiently complex manner in terms of one auxiliary function satisfying 
a fourth-order inhomogeneous partial differential equation. The 
representation from /3/, which is an extension of the frequently utilized 
Singh solution /4, 51 to the non-axisymmetric case, contains two functions 
that satisfy the combined inhomogeneous second-order differential equations. 
By using the proposed solution a two-dimensional integral equation of the 
first kind is obtained for the contact pressure under a heated rigid stamp 
of arbitrary planform, implanted in a transversely-isotropic elastic half- 
space without friction. An exact analytic solution of the integral 
equation mentioned is constructed for a stamp of elliptical planform. 

1. We select a rectangular coordinate system xi in such a manner that the plane of 
isotropy of the transversely-isotropic material agrees with the Xl% coordinate plane. The 
equations of linear uncoupled quasistatic thermoelasticity in terms of displacements 
for transversely-isotropic materials here take the form /2/ 

C&m, mtn + ‘/a(%1 - +JUm,nn + cunm,3a +% (Cl, -I- %,)&I, mll -t- (1.1) 
(%J + %.)a~, ma= bJ,m 

c,.,Ah,u~ + csaa,.as + (~1s + ccl) (ni.zs + UP,& = &J',a 

4 = (sr + ~1 a, + clSozr 4 = %,a, + c,,a, 

where Ut are the components of the displacement vector, clj are stiffness coefficients in 
abbreviated notation (the formulas connecting the stiffness coefficients with the technical 
elastic constants are contained in /5/j, T is the temperature measured from the initial value 
corresponding to vanishing stresses in the body and determined in the uncombined problem in- 
dependently of the displacement field, a, is the coefficient of linear expansion in the x1 
and 5s directions, ag in the 51 direction, and A, is the two-dimensional Laplace operator 
in the variables x1 and xW 

The stress tensor components are determined in terms of the displacement vector and the 
temperature field by relationships 

em, = c, (UJ.nr + Urn,,, 

%a = 'I* (c11 - c3 fur.% + a1.0 

The subscripts after the comma in (1.1) and (1.21 and everywhere later denote differen- 
tiation with respect to the corresponding coordinates, summation is not performed overrepeated 
subscripts, and the subscripts m and n take thevaluesl and 2, where m#n in the limits of 
the separate expressions. 

The stiffness coefficients satisfy the following inequalities /2/: 
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Cl1 > 03 Cl1 > C12T c44 > 0, c33 (Cl1 -k cl*) > 2c,, 

thatresultfrom the condition of positive-definiteness of the specific strain elastic energy. 
We will show that the particular solution of the inhomogeneous system (1.1) can be 

represented in the form 

% *- -%,??I + %,rn~ us* = hlcp,,, + h2%,3 (1.3) 

where the functions cpm (by analo gy with the Goodier solution for an isotropic material /6/, 
it is natural to call them generalized displacement potentials) are solutions of the following 
similar equations: 

d,cp, + JEm(pm,aa =$mT f1.4) 

and h,, km and &lx are as yet undetermined constants. 
Substituting (1.31 into (1.1) we find that the thermoelastic equilibrium equations in 

displacements are satisfied identically if the functions pm satisfy, in addition to (1.41, 
the system of equations 

which can, by using (1.4), be reduced to the form 

(1.5) 

t1m * = c,, + h, tc,, + cd - kmcu 
tls* = b 1 - Ml + Pa) Cl1 

t,m* =hmc,, - km Ic,, + (1 + hm) crol 

ha* = b, - $ BI ks + C-t- 41 ~1 

The system (1.5) is satisfied identically if the constants h,, km, and & areselected 
in such a manner that the relationships t,,i* = 0 (n = 1, 2; i = 1,2,3), which are a system 

(generally non-linear) of algebraic equations in the constants mentioned, are satisfied. 
Solving this system, we find that the-constants km and @m are expressed in terms of 
according to the formulas 

c&, = ~44 t (cis + ~4) h, 

C~APP (h, - km) pm = 5, 1~13 + (1 f h,) cM1 - b,c,, 

while the constants h, are the roots of the following characteristic equation 

and are determined by the formulas 

h, = 1 + CL4 +(--i)"lLPl 

A = cllcQ3 - (cl8 + 2~$, D = AB 

B = cllcJs - c,_os, C = 2 (B - A)-’ 

Therefore, the particular solution of the inhomogeneous system of Eqs.(l.l) allows 

hm 

(1.6) 

(1.7) 

(1.8) 

of 
representation in the form (1.31, (1.4) and the constants &,,, km, and fins are determined 
by the relationships (1.6) and (1.8). In a special case (for TssO} the representation 
mentioned agrees with the well-known Elliott solution /l/. 

Substituting (1.3) into (1.2) and using (1.4) , we obtain the following representation of 
the stress tensor components in terms of the generalized displacement potentials: 
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2. From the inequalities that the stiffness coefficients satisfy, it follows that the 
constant B is always positive. Consequently, the type of roots of the characteristic Eq.(1.7) 
is determined by the sign of the constant A: for A >0 we have two different real roots of 
(1.7), for A<0 two complex-conjugate roots, and for A = 0 two equal roots h,,, = 1. The 
case of equal roots requires separate examination since the constants fi,,, cannot here be 
determined directly from (1.6). 

In the case of equal roots of the characteristic equation when 

(cu + 2c44) En-1 = cQJ (cl8 + 2cJ' 3 k 

it is possible, by following /7/, to change to four new independent elastic constants p,L& 
and y: cl1 = (h + 2~) 6, c,, = (h i- 2p)6', c, = p, cl9 = a, cI1 - cIa = 2yp. Here A ~0 and k = &-‘. 
Setting 6 = y = 1 and a, = up = a, we emerge at the case of an isotropic material with Lame' 
constants p and h and coefficient of linear expansion a. 

We seek the particular solution of (1.1) in the case of equal roots of the characteristic 
equationinthe form 

%*=%,m+%$%m, %*=ch.s+%~,s-F~~ (2.1) 

where the functions $,,, satisfy the equations 

(2.2) 

Substituting (2.1) into (1.1) and using (2.2) we find (we omit the calculationsanalogous 
to those made above for the unequal root case) that the constants p, g, and fi are determined 
by the following relationships: 

P = (Gs + 3c.J (ClS + era)-', p = b,c,,_' 

q = (h - 4) [(i - P) kc,,]-’ 

Changing to an isotropic material in (2.1) and (2.2), we obtain 

k = 1, q = 0, B = a (3a + 24 (a + 24-l 

so that, without loss of generality, % = 0, and the mentioned representation reduces to 
the Goodier solution /6/, while the function ql reduces to the classical displacement 
potential. 

In the case of equal roots of the characteristic equation the stress tensor components 
are expressed in terms of the generalized displacement potentials $,, as follows: 

u* mm=-(cn- ~dh,nn+%+2.nn)- 

2% oh$ + wh) + %a(1 - PI%,8 

(2.3) 

~a$+ = (~1s - UY) (A$% + x$A$rP$) + k$$ - kb$B') h$$ + 

xah.ss) + caa (1 -P) $n.r 

3. By using the obvious affine coordinate transformations the equationsinthegeneralized 
displacement potentials (pm (A #O) or I#,,, (A = 0) are reduced to Poisson's equations. The 
particular solutions of these equations can be selected in the form of integrals of potential 
type, for instance, the functions (pm allow of such a representation: 

sss T (zl’) dzl’ dzt’ dzr’ 

{k,,, &I - d)’ + (2s - a’)‘] + (a - zs’)‘]“’ 

where the integration is over the domain occupied by the elastic material. 
By comparison with the forms proposed earlier /2, 3/ for the solution of (l.l), the 

representation (1.31, (1.4) is most preferable from the viewpoint of satisfying criteria 
proposed by Sternberg (these criteria are listed in /S/) to estimate methods of introducing 
the stress functions. 

A more general solution of the thermoelastic equilibrium Eqs.cl.1) can be obtained by 
setting 

u1 = u1* + a.$, IL* = up* - 0.1, lk$ = ua* i3.1) 
where I&,* are determined by (1.3) in the case of unequal roots of the characteristic equation 
and by (2.1) in the case of equal roots, while the function 0 introduced in /9: lo/, satisfies 
the homogeneous equation A,m + 2~4, (~11 - cla)-lo.aa = 0 and is independent of the temperature 
field. 
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The representation proposed by Nowacki /2/ for the particular solution of (1.1) in terms 
of one function satisfying a fourth-oxder inhomogeneous partial differential equation can be 
obtained from the solution (l-3), (1.4). To this end, we introduce a new function y by 
using the relationships 

urn = IL (A,Y + k,Y‘,ss) (3.2) 

Thereby Eqs.(l.l) for the generalized displacement potentials vpm are reduced to one 
fourth-order equation in the function Y!, namely 

Representations of the displacement vector and stress tensor components in terms of the 
function Y can be obtained by substituting (3.2) into (1.3) and (1.9). 

4. The representation (3.1) enables us to construct solutions of the boundary value 
problems of the theory of thermal stresses for transversely-isotropic bodies in the form of 
the superposition of solutions of independent equations that are reduced to Poisson'sequations 
by using affine coordinate transformations. 

As an illustration we consider the non-axisymmetric mixed boundary value problem of the 
pressure of an absolutely stiff heated stamp of arbitrary planfonn on a transversely-isotropic 
elastic half-space ~a> 0 when there are no friction forces. 

The mechanical boundary conditions of the problem in question have the form 

13,3(x. 0) = 0, 0 <I < m (4.1) 
z&z (x, 0) = f(x), x E S 
es3 (x, 0) = 0, X e s 
X = (x1, r& x = / x ! ET? (zlZ + z3y 

where f(x) is a given function (specified apart from the displacement parameters of the stamp 
as a solid body), describing the shape of the stamp base, and S is the contact area. 

When thereareno heat sources the stationary temperature field satisfies the equation 

/5/ 
A,T + x22-,,, = 0 (4.2) 

where xB is the ratio between the thermal conductivity in the xg direction and the thermal 
conductivity in the x1 and x2 directions. 

To be specific, we consider temperature boundary conditions of the type a in the 
classification from the paper /ll/, in which four kinds of idealized conditions axe mentioned 
for contact problems, namely (t(x) is a given function) 

T(x,O)=t(x), XCZS; T(x,O)==O, x $S (4.3) 

Relationships (4.1) and (4.3) should be supplemented by standard equilibrium conditions 
for the stamp and attenuation of the thennoelastic field at infinity /12, 13/. 

We will examine the case of unequal roots of the characteristic equation. For vanishing 
shear stresses on the half-space boundary, it is possible to set w me 0, in (3.1) without 
loss of generality; consequently, we use the representation (1.3) directly while omitting 
the asterisk in the?notation for the displacement and stress. 

We introduce the two-dimensional Fourier integral transform operator 

acting on (4.2) and (1.4), and by solving the ordinary differential equations hence obtained 
and taking account of the conditions at infinity, we find (~~(~) are arbitrary functions) 

TF (6.G) = !rF (E, 0) sxp (--&a), E = 18 I 
cp,F(k 5)=&I(%)sxP(- %a,) -t- 

B&(&n-- xp)-1 %-‘TF(%,O) exp(- %z) 

z = x&t, z, = z,lk,‘l* 

V.4) 

Applying a Fourier transform to (1.3) and (1.9) , substituting (4.4) into the relation- 
ships obtained and setting z1 = 0, we arrive, in particular, at the following representations: 

u.'(%,o)=-_~~h,IEB,(E) kT’“+ x%-lTF(%,O)r~l (4.5) 
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%aF(%, 0) = %%o j$ (1 -t- h,)IE, (%) + n%-TF (6, O)r,] 

r ,,, = $,,, (k, - xa) -I 

Using the first boundary condition f4.1), we find a relation between the functions E,(f) 
from the second relationship of (4.5) 

(4.61 

Substituting (4.6) into the first and third equations of (4.5) and eliminating the 
function E,(g) from the relationships obtained, we establish a formula connecting the Fourier 
transforms of the normal displacements and the normal stresses at points of the plane xa = 0 

ugF (5, 0) = H*E-‘(r,F (E, 0) f G*E-‘T= (6, 0) 
N” = (k,% + k;y Et1 (CISZ - CllCJ1 

G* = x (ky* - kz’)-’ [& (1 - h,) (k;‘* + x)-l - Pa (I- h,)(k:” + x)-l] 

(4.7) 

Acting on (4.7) with the inverse Fourier transform operator, and taking account of the 
third boundary condition (4.1) and the boundary conditions (4.3), we find 

(4.8) 

H = - (2x)-'H*, G = (2s)~'G* 

where u (x) = --us8 (x, 0) is the contact pressure. 
Satisfying the second boundary condition (4.1) by using (4.81, we arrive at a two-dimen- 

sional integral equation of the first kind in the contact pressure 

HSSo(x’)jx-xx’I-‘dx’=j(x)-Ge(x),x~S 

e~qp(x~,~x- x’j-‘dx’ 

(4.9) 

which reduces to a well-known equation in the isothermal case (when e(x)= 0) /13/. 

5. The contact problem of transversely-isotropic thermoelasticity for a circular stamp 
has been investigated fairly completely /5/, certain results on the thermal contact problem 
of isotropic elasticity theory are presented /II, 14/ for an elliptical stamp,andthe corre- 
sponding isothermal case is studied in /12, 13/. 

We consider below the contact problem for a heated stamp of elliptical planform with a 
polynomial base shape pressed into a transversely-isotropic elastic half-space (the principal 
vector and principal moments of the forces applied to the stamp are considered given). In 
this case 

where al and 0, are semi-axes of the ellipse, f (x1 is a polynomial of arbitrary degree 1, 
in x, and 2,. where the coefficients jtl are given for i -I- i > 1, while foe. jicr and f0, are 
the translational displacement and projections of the stamp rotation vector, not known in 
advance. 

It can be shown that if the given temperature distribution over the contact area S has 
the form 

I.-Sk 

t(x) = u’-%(x) r, ttpl*r*j. Y(X) = f - + - -g 
f+i=o 

(5.1) 
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where 1, is an arbitrary integer, k is any of the numbers 0, 1, 2 , . . ., 1421, and lrl is 
the integer part of the number r, then 

where the coefficient 8ij are expressed in a known manner in terms of the constants 1,1 /15/. 
Under the assumptions made above, the integral Eq.(4.9) contains a polynomial of degree 

Z= max {ll,&} in z1 and I, on the right side 

H 1s u (x’) / x - x’ 1-1 dx’ = i qctz;x~, x E s (5.2) 
s i+j=O 

whose coefficients Qij are determined in an obvious manner in terms of the constants fi, and 

6%. 
Setting 

we reduce (5.2) to a system of 1/2(i $- 1)(l+2) linear algebraic equations in 3 $- l/g(l$l)(t -i- 
2) unknown constants fool fro, fol and zij, The stamp equilibrium conditions yield three 
additional algebraic equations for %+lj. The explicit form of all these algebraic equations 
is mentioned in /15/. 

Therefore, if a stamp of elliptical planform with a sharp edge has a polynomial base and 
the temperature distribution over the contact area is described by (5.11, then the contact 
pressure under the stamp has the form (5.3) and the coefficients Z~J are determined from the 
corresponding system of linear algebraic equations. 

The result established extends the well-known Galin theorem on the functional form of the 
contact pressure under a stamp of elliptical planform /12/ to the case of transversely-iso- 
tropic thermoelasticity. 
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